LIRNet: A Lightweight Inception Residual Convolutional Network for Solar Panel Defect Classification

نویسندگان

چکیده

Solar-cell panels use sunlight as a source of energy to generate electricity. However, the performances solar decline when they degrade, owing defects. Some common defects in solar-cell include hot spots, cracking, and dust. Hence, it is important efficiently detect repair them. In this study, we propose lightweight inception residual convolutional network (LIRNet) panels. LIRNet neural model that utilizes deep learning techniques. To achieve high performance on panels, including fault detection accuracy processing speed, draws hierarchical learning, which two-phase solar-panel-defect classification method. The first phase data-preprocessing stage. We K-means clustering algorithm refine dataset. second training model. designed powerful enhance speed up time. experiment, improved by approximately 8% performed ten times faster than EfficientNet.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Inception-Residual Convolutional Neural Network for Object Recognition

Machine learning and computer vision have driven many of the greatest advances in the modeling of Deep Convolutional Neural Networks (DCNNs). Nowadays, most of the research has been focused on improving recognition accuracy with better DCNN models and learning approaches. The recurrent convolutional approach is not applied very much, other than in a few DCNN architectures. On the other hand, In...

متن کامل

A Deep Residual Inception Network for HEp-2 Cell Classification

Indirect-immunofluorescence (IIF) of Human Epithelial-2 (HEp-2) cells is a commonly-used method for the diagnosis of autoimmune diseases. Traditional approach relies on specialists to observe HEp-2 slides via the fluorescence microscope, which suffers from a number of shortcomings like being subjective and labor intensive. In this paper, we proposed a hybrid deep learning network combining the ...

متن کامل

Facies classification from well logs using an inception convolutional network

The idea to use automated algorithms to determine geological facies from well logs is not new (see e.g Busch et al. (1987); Rabaute (1998)) but the recent and dramatic increase in research in the field of machine learning makes it a good time to revisit the topic. Following an exercise proposed by Dubois et al. (2007) and Hall (2016) we employ a modern type of deep convolutional network, called...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Inception Recurrent Convolutional Neural Network for Object Recognition

Deep convolutional neural networks (DCNNs) are an influential tool for solving various problems in the machine learning and computer vision fields. In this paper, we introduce a new deep learning model called an InceptionRecurrent Convolutional Neural Network (IRCNN), which utilizes the power of an inception network combined with recurrent layers in DCNN architecture. We have empirically evalua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16052112